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Abstract: Graph embedding is an important tool in parallel computation and
interconnection networks. Interconnection network plays a major role in parallel
processing and computation system. The embedding technique helps in demon-
strating parallel computer and the interconnection network is given through guest
graph where the challenge is to find out non-verlapping minimum wirelength. In
this paper with Petersen graph as guest graph and cycle of triangle as host graph,
we find the exact wirelength of embedding Petersen graph P(n,m) into cycle of
triangle.
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1. Introduction and Preliminaries

Graph embedding is an important tool in parallel computation or simulation
of different interconnection networks. Using graph theory, parallel computer is
modelled with vertices and edges denoting processes and communication between
the processes respectively. Applications of graph embedding is rooted from VLSI
designs, data structures and data representation, networks for parallel computer
systems, biological models that deal with cloning and visual stimuli, parallel archi-
tecture and structural engineering and so on [9, 12].
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Graph embedding has its own dominating role in understanding the architec-
tures of nature and human. We have varieties of results proved in circular wire-
length of generalized Petersen graph [10], Petersen graph into certain trees [9],
hypercubes into grids [2], binary trees into hypercubes [5], hypercubes into cylin-
der, snakes and caterpillars [7], hypercubes on a grid [8] and so on. In this paper,
we will find out the exact wirelength of embedding Petersen graph P(n,m) into
cycle of triangle C'T',, using generalized congestion lemma, congestion lemma, par-
tition lemma and k-partition lemma.

Definition 1.1. [2] Let G and H be finite graphs with n vertices. Let V(G) and
V(H) denote the vertex sets of G and H respectively. Let E(G) and E(H) denote
the edge sets of G and H respectively. An embedding f of G into H is defined as
follows:

(i) [ is an injective map from V(G) — V(H),

(11) Py is an injective map from E(G) to Pr(u,v) : Pr(u,v) is a path in H between
f(u) and f(v).

Definition 1.2. [2] The edge congestion of an embedding f of G into H is the
mazimum number of edges of the graph G that are embedded on any single edge
of H. Let ECy(G, H(e)) denote the number of edges (u,v) of G such that e is in
the path Pp(u,v) between f(u) and f(v) in H. In other words, EC;(G, H(e)) =
|(u,v) € E(G) : e € Pg(u,v)| where Ps(u,v) denotes the path between f(u) and
f(v) in H with respect to f.

Definition 1.3. [8] The wirelength of an embedding f of G into H is given by
WLi(G, H) =Euvercdn (f(u), f(v) =Xeer ECy(G, H(e)) where dy (f(u),
f(v)) denotes the length of the path Ps(u,v) in H. Then the wirelength of G into
H is defined as WL(G,H) = min WL;(G, H).

In the literature [3], there are two problems have been considered with respect
to edge isoperimetric problem. The first problem is to find a subset of vertices of
a given graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality and the second one is
to find a subset of vertices of a given graph, such that the number of edges in the
subgraph induced by this subset is maximal among all induced subgraphs with the
same number of vertices. That is, given X C V(G), we denote O¢(X) = {uv €
EG):ue X,v¢g X} and Ig(X) ={uww € E(G) :u,v € X}. Fork=1,2,....n,

1 = i = . T
et O¢(k) XgV(%l)l,n\X|:k |©¢(X)|, and g (k) ng{ral%ﬁx‘:k\lg()()] he above

two problems are equivalent in the case of regular graphs and are NP-complete in
general [6].
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Lemma 1.1. (Congestion Lemma) [8] Let G' be an r regular graph and f be an
embedding of G into H. Let S be an edge cut of H such that the remowval of
edges of S leaves H into two components Hy and Hy and G1 = G[f~'(H,)] and
Gy = G[f7'(H,)]. Also S satisfies the following conditions:

(i) For every edge a,b) € G;, i =1,2, Pf(a,b) has no edges in S.

(i1) For every edge (a,b) € G with a € Gy and b € Gy, Ps(a,b) has exactly one
edge in S.

(i1i) Gy is maximum subgraph on k vertices where k = |V (G1)].
Then EC(S) is minimum and EC;(S) = rk — 2|E(Gy)|.

Lemma 1.2. (Generalized Congestion Lemma) [10] Let f be an embedding of G
ito H. Let S be an edge cut of H such that the removal of edges of S splits H
into k components H;, 1 <i < k. Let G; = G[f7'(H;)], 1 <i <k, be such that
the sets G; are optimal and S satisfies the following conditions:

(i) For every edge (u,v) € G;, 1 <i <k, Ps(u,v) has no edges in S.

(i1) For every edge (u,v) € G with uw € G; and v € G; fori < j, Pr(u,v) has
exactly one edge in S.

Then EC(S) is minimum over all possible embeddings and EC(S) = 53
where m; = |V(G;)|. Further when G is an r- regular graph, EC¢(S) = 5|V(G)| —
S| E(Gil.

Lemma 1.3. (Partition Lemma) [8] Let f : G — H be an embedding. Let
{S1, 52, ..., Sp} be a partition of E(H) such that each S; is an edge cut of H. Then,
WLi(G,H) =% |EC(S;).

Lemma 1.4. (k-Partition Lemma) [10] Let f : G — H be an embedding. Let
[kE(H)] denote a collection of edges of H with each edge in H repeated exactly k

times. Let {S1, S, ...,5,} be a partition of [kE(H)| such that each S; is an edge
cut of H. Then WL(G, H) = 30 EC(S;).

2. Generalized Petersen Graph P(n,m)

Definition 2.1. [10] The generalized Petersen graph P(n,m), 1 < m < n —1
and n # 2m, consists of an outer n-cycle {uy,us,...,u,}, a set of n spokes
(ui,v3),1 < i < n and n inner edges (vi,V(itm)) with indices taken modulo n.
It is a 3-reqular graph and contains 2n vertices and 3n edges.

Parallel Labeling: For 1 < i < n, we call the vertices u; and v; of P(m,n) as
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outer rim and inner rim vertices respectively and label the vertices u; and v; as
2i — 2 and 2i — 1 respectively. We call this labeling as parallel labeling [10] of the
generalized Petersen graph P(n,m).

Definition 2.2. Let C, be a cycle on n vertices with vertex set {v; : 0 < i < n—1}.
The cycle of triangle C'T,, is obtained from C,, by adding new vertices {u; : 0 < i <
n — 1} such that v; and vy are joined to u;, 0 < i < n —1 , where the suffix is
taken modulo n.

Zigzag Labeling: For 0 < ¢ < n — 1, we label the vertices u; as 2i and v;,
0<i<n—1as2i—1 and vy as 2n — 1. We call this labeling as zigzag labeling.

Theorem 2.1. [10] The number of edges in the subgraph induced by any set of k
vertices of P(n,1),5 < k <n is atmost k + | 5] — 2.

Theorem 2.2. The number of edges in the subgraph induced by any set of k ver-
tices of P(n,2),6 < k <n is atmost k + |£] — 3.

Proof. Let U = {vy,vs,...,u:} be a set of k vertices of P(n,2), not necessarily
with consecutive labels. Let H be the subgraph of P(n,2) induced by the vertices
of U.

Case 1: If all the vertices of H are outer rim vertices then |E(H)| < k. Hence
|E(H)| < k+ |%] — 3. The same argument is true if all the vertices of H are inner
rim vertices.

Case 2 : Let k; and ke be the number of outer and inner rim vertices of H re-
spectively such that k£ = k; + ko. Without loss of generality, we prove the result
for ky > [£7] and ko < |£].

Subcase 2.1: (kg < ng) : If outer rim vertices induce one or more arcs then the
number edges induced by these vertices is atmost k; — 1. But E(H) can have a
maximum of ky spokes and k; — 1 edges induced by the inner rim vertices. We have
ks < |E] —1and hence |E(H)| < ki —1+ko+ky—1=k+k —2<k+ |5 -3.
Subcase 2.2: (k]g = L%J) : In this case k1 = ko if k is even, and k; = ko + 1 if &
is odd. Assume that outer rim vertices induce an arc. Then the number of edges
induced by outer rim vertices is ky — 1. If E(H) contains ko spokes then ko inner rim
vertices induce k> —2 edges of H and hence |E(H)| = ki —14+ko+ko—2 = k+[£]|-3.
Suppose the number of spokes in E(H) is less than ko. If E(H) contains a cycle
on [£| inner rim vertices then k must be even and k = n. Since [£] number of
outer rim vertices induce an arc, we get the number of spokes in E(H) is atmost
[£]. Therefore |E(H)| < ki — 1+ ko + [£] < k — 2+ [£]. Since k > 6, we get
[%1 >2and |£] > 3. Thus |E(H)| < k+ L%j —3. If E(H) contains no cycle on | £]
inner rim vertices then it contains one or more arcs induced by inner rim vertices.
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Then the number of edges induced by inner rim vertices atmost ks — 1. Therefore
|E(H)| <ki—14+ko+ke—1<k+ L%J — 3.

Assume that outer rim vertices induce more than one arc then the number edges
induced by these vertices is atmost k; — 2. Suppose the number of spokes in F(H)
is less than k. Then the number of edges induced by inner rim vertices is atmost
ks — 1. Hence |[E(H)| < ki —2+ ko + ks — 1 < k + |£] — 3. Suppose the number
of spokes in E(H) is k. If E(H) contains a cycle on |£] inner rim vertices then

k must be even and £ = n. In this case the number edges induced by outer rim
vertices is zero. Therefore |E(H)| = ko +ky < k. If E(H) contains no cycle on | £ |
inner rim vertices then it contains one or more arcs induced by inner rim vertices.
Then the number of edges induced by inner rim vertices is atmost ks — 1. Therefore

|E(H)|§k1—2+k2+k2—1§k+tgj—

Theorem 2.3. Let H be a subgraph of P(n,2) induced by k vertices, 6 < k <n
such that

(i) if k is even, the labels of the k vertices are {i + 1,i+2,...,1+ k} and

(1) if k is odd, the labels of the k — 1 vertices are {i+ 1,1+ 2,....,i +k — 1} and
k" wvertex is of any one of the labels i — 1,4,i 4+ k or i+ k + 1.

where 1 1s odd and the labels are taken modulo 2n. Then H is a mazimum subgraph
of P(n,2).

Proof. Assume that H contains [£] outer rim vertices and | %] inner rim vertices.
Then, the number of edges induced by outer rim vertices is [%1 — 1 and that of
inner rim vertices is |£] — 2. Also the number of spokes induced by H is |%].
Therefore |E(H)| = [£] =1+ [£] =2+ [£] =k + |£] — 3. The same argument is
true if H contains [£] number of inner rim vertices and |[£]| number of outer rim
vertices. By Theorem 2.2, H is a maximum subgraph of P(n,2).

3. Embedding Generalized Petersen Graph into Cycle of Triangle

Theorem 3.1. [11] The exact wirelength of Petersen graph P(n,1) into cycle of
traingle C'T,, is given by W L(P(n,1),CT,) = 4n.

Theorem 3.2. The ezact wirelength of Petersen graph P(n,2) into Cycle of Tri-
angle C'T,, is given by W L(P(n,2),CT,) = 5n.

Proof. Label the vertices of P(n, 2) using parallel labelling and label the vertices
of CT, using zigzag labelling as {0,1,...,n — 1}.

Case (i) (n odd)
For 0 <i<n-—1,let X; = {(vi, viz1), (v, u;), (’Uanl+i,UnT+1+i), (vnTH+i,unT4+i)} be
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an edge cut of CT,. Then for each i, CT,, — X; has two components X H}, X H?
which are consecutively labelled and let G;, = f~'(XH}) and G,, = f~1(XH?).
Then by Theorem 2.3, GG;, be the induced subgraph of P(n,2) on n vertices is the
maximum subgraph. Therefore by Lemma 1.1, ECy(X;) is minimum and using
Theorem 2.2, ECy(X;) =3n —2(n+ [5] —3) =T.

For 0 <i <n-—1,let Y; = {(u;,v), (us, v;11)} be an edge cut of C'T,,. Then
CT, —Y; yields the components Y H} which is single vertex and let G; = f~1(Y H}).
Clearly, GG; be the induced subgraph of P(n,2) is maximum. Therefore by Lemma
1.1, EC¢(Y;) is minimum and using Theorem 2.2, EC;(Y;) = 3.

Hence by Lemma 1.4, the wirelength of Petersen graph P(n,2) into cycle of triangle
CT, is
1

WL(P(n,2),CT,) =5 Si{EC (X)) + ECy(Y,)} = 5n.

Case (ii) (n even)

For 0 <i < (n/2) — 1, let Ay = {(vs,vig1), (Vi, W), (Vig1, W), (Vny2)y+is Vinj2)4it1)s
(Vin/2)+ir Un/2)+i)s (Vnj2)+it1, Un/2)+i) } be an edge cut of C'T,, as shown in Figure
1. Then CT,, — A; yields 4 components AH!,1 < | < 4 which are consecutively
labelled and |AH}| =n — 1, |AH?| = 1, |AH?| = n — 1, and |AH}| = 1. Let let
G;, = [Y(AH!), 1 <1 < 4. By Theorem 2.3, G;, be the induced subgraph of
P(n,2) is the maximum. Therefore by Lemma 1.2, EC¢(A;) is minimum and using
Theorem 2.2, EC¢(4;) =3(n—1)—2((n—1) + (| %2]) — 3) = 10. By Lemma 1.3,

2
the wirelength of Petersen graph P(n,2) into cycle of triangle C'T,, is calculated by

WL(P(n,2),CT,) = S EC(A;) = 5n.

Figure 1: Embedding of Petersen Graph P(10,2) into CTyg

By extending the above arguments, we can easily arrive the following result.
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Theorem 3.3. The exact wirelength of Petersen graph P(n,m),1 < m < n —
1 and n # 2m into cycle of traingle CT,, is given by W L(P(n,m),CT,) = (m+3)n.

4. Conclusion

In this paper, we have found the exact wirelength of generalized Petersen graph
P(n,m) into cycle of triangle CT,, by effectively using generalized congestion and
partition lemmas.
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