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Abstract: Graph embedding is an important tool in parallel computation and
interconnection networks. Interconnection network plays a major role in parallel
processing and computation system. The embedding technique helps in demon-
strating parallel computer and the interconnection network is given through guest
graph where the challenge is to find out non-verlapping minimum wirelength. In
this paper with Petersen graph as guest graph and cycle of triangle as host graph,
we find the exact wirelength of embedding Petersen graph P (n,m) into cycle of
triangle.
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1. Introduction and Preliminaries
Graph embedding is an important tool in parallel computation or simulation

of different interconnection networks. Using graph theory, parallel computer is
modelled with vertices and edges denoting processes and communication between
the processes respectively. Applications of graph embedding is rooted from VLSI
designs, data structures and data representation, networks for parallel computer
systems, biological models that deal with cloning and visual stimuli, parallel archi-
tecture and structural engineering and so on [9, 12].
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Graph embedding has its own dominating role in understanding the architec-
tures of nature and human. We have varieties of results proved in circular wire-
length of generalized Petersen graph [10], Petersen graph into certain trees [9],
hypercubes into grids [2], binary trees into hypercubes [5], hypercubes into cylin-
der, snakes and caterpillars [7], hypercubes on a grid [8] and so on. In this paper,
we will find out the exact wirelength of embedding Petersen graph P (n,m) into
cycle of triangle CT n using generalized congestion lemma, congestion lemma, par-
tition lemma and k-partition lemma.

Definition 1.1. [2] Let G and H be finite graphs with n vertices. Let V (G) and
V (H) denote the vertex sets of G and H respectively. Let E(G) and E(H) denote
the edge sets of G and H respectively. An embedding f of G into H is defined as
follows:
(i) f is an injective map from V (G)→ V (H),
(ii) Pf is an injective map from E(G) to Pf (u, v) : Pf (u, v) is a path in H between
f(u) and f(v).

Definition 1.2. [2] The edge congestion of an embedding f of G into H is the
maximum number of edges of the graph G that are embedded on any single edge
of H. Let ECf (G,H(e)) denote the number of edges (u, v) of G such that e is in
the path Pf (u, v) between f(u) and f(v) in H. In other words, ECf (G,H(e)) =
|(u, v) ∈ E(G) : e ∈ Pf (u, v)| where Pf (u, v) denotes the path between f(u) and
f(v) in H with respect to f .

Definition 1.3. [8] The wirelength of an embedding f of G into H is given by
WLf (G,H) = Σ(u,v)∈E(G)dH (f(u), f(v)) = Σe∈E(G)ECf (G,H(e)) where dH (f(u),
f(v)) denotes the length of the path Pf (u, v) in H. Then the wirelength of G into
H is defined as WL(G,H) = min WLf (G,H).

In the literature [3], there are two problems have been considered with respect
to edge isoperimetric problem. The first problem is to find a subset of vertices of
a given graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality and the second one is
to find a subset of vertices of a given graph, such that the number of edges in the
subgraph induced by this subset is maximal among all induced subgraphs with the
same number of vertices. That is, given X ⊆ V (G), we denote ΘG(X) = {uv ∈
E(G) : u ∈ X, v 6∈ X} and IG(X) = {uv ∈ E(G) : u, v ∈ X}. For k = 1, 2, . . . , n,
let ΘG(k) = min

X⊆V (G), |X|=k
|ΘG(X)|, and IG(k) = max

X⊆V (G), |X|=k
|IG(X)|. The above

two problems are equivalent in the case of regular graphs and are NP-complete in
general [6].
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Lemma 1.1. (Congestion Lemma) [8] Let G be an r regular graph and f be an
embedding of G into H. Let S be an edge cut of H such that the removal of
edges of S leaves H into two components H1 and H2 and G1 = G[f−1(H1)] and
G2 = G[f−1(H2)]. Also S satisfies the following conditions:

(i) For every edge a, b) ∈ Gi, i = 1, 2, Pf (a, b) has no edges in S.

(ii) For every edge (a, b) ∈ G with a ∈ G1 and b ∈ G2, Pf (a, b) has exactly one
edge in S.

(iii) G1 is maximum subgraph on k vertices where k = |V (G1)|.

Then ECf (S) is minimum and ECf (S) = rk − 2|E(G1)|.
Lemma 1.2. (Generalized Congestion Lemma) [10] Let f be an embedding of G
into H. Let S be an edge cut of H such that the removal of edges of S splits H
into k components Hi, 1 ≤ i ≤ k. Let Gi = G[f−1(Hi)], 1 ≤ i ≤ k, be such that
the sets Gi are optimal and S satisfies the following conditions:

(i) For every edge (u, v) ∈ Gi, 1 ≤ i ≤ k, Pf (u, v) has no edges in S.

(ii) For every edge (u, v) ∈ G with u ∈ Gi and v ∈ Gj for i < j, Pf (u, v) has
exactly one edge in S.

Then ECf (S) is minimum over all possible embeddings and ECf (S) = 1
2
Σk

i=1ΘG(mi)
where mi = |V (Gi)|. Further when G is an r- regular graph, ECf (S) = r

2
|V (G)| −

Σk
i=1|E(Gi|.

Lemma 1.3. (Partition Lemma) [8] Let f : G −→ H be an embedding. Let
{S1, S2, ..., Sp} be a partition of E(H) such that each Si is an edge cut of H. Then,
WLf (G,H) = Σp

i=1ECf (Si).

Lemma 1.4. (k-Partition Lemma) [10] Let f : G −→ H be an embedding. Let
[kE(H)] denote a collection of edges of H with each edge in H repeated exactly k
times. Let {S1, S2, ..., Sp} be a partition of [kE(H)] such that each Si is an edge
cut of H. Then WLf (G,H) = 1

k
Σp

i=1ECf (Si).

2. Generalized Petersen Graph P (n,m)

Definition 2.1. [10] The generalized Petersen graph P (n,m), 1 ≤ m ≤ n − 1
and n 6= 2m, consists of an outer n-cycle {u1, u2, . . . , un}, a set of n spokes
(ui, vi), 1 ≤ i ≤ n and n inner edges (vi, v(i+m)) with indices taken modulo n.
It is a 3-regular graph and contains 2n vertices and 3n edges.

Parallel Labeling: For 1 ≤ i ≤ n, we call the vertices ui and vi of P (m,n) as
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outer rim and inner rim vertices respectively and label the vertices ui and vi as
2i − 2 and 2i − 1 respectively. We call this labeling as parallel labeling [10] of the
generalized Petersen graph P (n,m).

Definition 2.2. Let Cn be a cycle on n vertices with vertex set {vi : 0 ≤ i ≤ n−1}.
The cycle of triangle CTn is obtained from Cn by adding new vertices {ui : 0 ≤ i ≤
n − 1} such that vi and v(i+1) are joined to ui, 0 ≤ i ≤ n − 1 , where the suffix is
taken modulo n.

Zigzag Labeling: For 0 ≤ i ≤ n − 1, we label the vertices ui as 2i and vi,
0 ≤ i ≤ n− 1 as 2i− 1 and v0 as 2n− 1. We call this labeling as zigzag labeling.

Theorem 2.1. [10] The number of edges in the subgraph induced by any set of k
vertices of P (n, 1), 5 ≤ k ≤ n is atmost k + bk

2
c − 2.

Theorem 2.2. The number of edges in the subgraph induced by any set of k ver-
tices of P (n, 2), 6 ≤ k ≤ n is atmost k + bk

2
c − 3.

Proof. Let U = {v1, v2, ..., vk} be a set of k vertices of P (n, 2), not necessarily
with consecutive labels. Let H be the subgraph of P (n, 2) induced by the vertices
of U .
Case 1: If all the vertices of H are outer rim vertices then |E(H)| ≤ k. Hence
|E(H)| ≤ k + bk

2
c− 3. The same argument is true if all the vertices of H are inner

rim vertices.
Case 2 : Let k1 and k2 be the number of outer and inner rim vertices of H re-
spectively such that k = k1 + k2. Without loss of generality, we prove the result
for k1 ≥ dk2e and k2 ≤ bk2c.
Subcase 2.1:

(
k2 < bk2c

)
: If outer rim vertices induce one or more arcs then the

number edges induced by these vertices is atmost k1 − 1. But E(H) can have a
maximum of k2 spokes and k2−1 edges induced by the inner rim vertices. We have
k2 ≤ bk2c − 1 and hence |E(H)| ≤ k1 − 1 + k2 + k2 − 1 = k + k2 − 2 ≤ k + bk

2
c − 3.

Subcase 2.2:
(
k2 = bk

2
c
)

: In this case k1 = k2 if k is even, and k1 = k2 + 1 if k
is odd. Assume that outer rim vertices induce an arc. Then the number of edges
induced by outer rim vertices is k1−1. If E(H) contains k2 spokes then k2 inner rim
vertices induce k2−2 edges of H and hence |E(H)| = k1−1+k2+k2−2 = k+bk

2
c−3.

Suppose the number of spokes in E(H) is less than k2. If E(H) contains a cycle
on bk

2
c inner rim vertices then k must be even and k = n. Since dk

2
e number of

outer rim vertices induce an arc, we get the number of spokes in E(H) is atmost
dk
4
e. Therefore |E(H)| < k1 − 1 + k2 + dk

4
e ≤ k − 2 + dk

4
e. Since k ≥ 6, we get

dk
4
e ≥ 2 and bk

2
c ≥ 3. Thus |E(H)| ≤ k+bk

2
c−3. If E(H) contains no cycle on bk

2
c

inner rim vertices then it contains one or more arcs induced by inner rim vertices.
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Then the number of edges induced by inner rim vertices atmost k2 − 1. Therefore
|E(H)| < k1 − 1 + k2 + k2 − 1 ≤ k + bk

2
c − 3.

Assume that outer rim vertices induce more than one arc then the number edges
induced by these vertices is atmost k1− 2. Suppose the number of spokes in E(H)
is less than k2. Then the number of edges induced by inner rim vertices is atmost
k2 − 1. Hence |E(H)| < k1 − 2 + k2 + k2 − 1 < k + bk

2
c − 3. Suppose the number

of spokes in E(H) is k2. If E(H) contains a cycle on bk
2
c inner rim vertices then

k must be even and k = n. In this case the number edges induced by outer rim
vertices is zero. Therefore |E(H)| = k2 + k2 ≤ k. If E(H) contains no cycle on bk

2
c

inner rim vertices then it contains one or more arcs induced by inner rim vertices.
Then the number of edges induced by inner rim vertices is atmost k2−1. Therefore
|E(H)| ≤ k1 − 2 + k2 + k2 − 1 ≤ k + bk

2
c − 3.

Theorem 2.3. Let H be a subgraph of P (n, 2) induced by k vertices, 6 ≤ k ≤ n
such that

(i) if k is even, the labels of the k vertices are {i + 1, i + 2, ..., i + k} and

(ii) if k is odd, the labels of the k − 1 vertices are {i + 1, i + 2, ..., i + k − 1} and
kth vertex is of any one of the labels i− 1, i, i + k or i + k + 1.

where i is odd and the labels are taken modulo 2n. Then H is a maximum subgraph
of P (n, 2).
Proof. Assume that H contains dk

2
e outer rim vertices and bk

2
c inner rim vertices.

Then, the number of edges induced by outer rim vertices is dk
2
e − 1 and that of

inner rim vertices is bk
2
c − 2. Also the number of spokes induced by H is bk

2
c.

Therefore |E(H)| = dk
2
e − 1 + bk

2
c − 2 + bk

2
c = k + bk

2
c − 3. The same argument is

true if H contains dk
2
e number of inner rim vertices and bk

2
c number of outer rim

vertices. By Theorem 2.2, H is a maximum subgraph of P(n, 2).

3. Embedding Generalized Petersen Graph into Cycle of Triangle

Theorem 3.1. [11] The exact wirelength of Petersen graph P (n, 1) into cycle of
traingle CTn is given by WL(P (n, 1), CTn) = 4n.

Theorem 3.2. The exact wirelength of Petersen graph P (n, 2) into Cycle of Tri-
angle CTn is given by WL(P (n, 2), CTn) = 5n.
Proof. Label the vertices of P (n, 2) using parallel labelling and label the vertices
of CTn using zigzag labelling as {0, 1, . . . , n− 1} .
Case (i) (n odd)
For 0 ≤ i ≤ n− 1, let Xi = {(vi, vi+1), (vi, ui), (vn−1

2
+i, vn+1

2
+i), (vn+1

2
+i, un−1

2
+i)} be
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an edge cut of CTn. Then for each i, CTn − Xi has two components XH1
i , XH2

i

which are consecutively labelled and let Gi1 = f−1(XH1
i ) and Gi2 = f−1(XH2

i ).
Then by Theorem 2.3, Gi1 be the induced subgraph of P (n, 2) on n vertices is the
maximum subgraph. Therefore by Lemma 1.1, ECf (Xi) is minimum and using
Theorem 2.2, ECf (Xi) = 3n− 2(n + bn

2
c − 3) = 7.

For 0 ≤ i ≤ n − 1, let Yi = {(ui, vi), (ui, vi+1)} be an edge cut of CTn. Then
CTn−Yi yields the components Y H1

i which is single vertex and let Gi = f−1(Y H1
i ).

Clearly, Gi be the induced subgraph of P (n, 2) is maximum. Therefore by Lemma
1.1, ECf (Yi) is minimum and using Theorem 2.2, ECf (Yi) = 3.
Hence by Lemma 1.4, the wirelength of Petersen graph P (n, 2) into cycle of triangle
CTn is

WL(P (n, 2), CTn) =
1

2
Σn−1

i=0 {ECf (Xi) + ECf (Yi)} = 5n.

Case (ii) (n even)
For 0 ≤ i ≤ (n/2) − 1, let Ai = {(vi, vi+1), (vi, ui), (vi+1, ui), (v(n/2)+i, v(n/2)+i+1),
(v(n/2)+i, u(n/2)+i), (v(n/2)+i+1, u(n/2)+i)} be an edge cut of CTn as shown in Figure
1. Then CTn − Ai yields 4 components AH l

i , 1 ≤ l ≤ 4 which are consecutively
labelled and |AH1

i | = n − 1, |AH2
i | = 1, |AH3

i | = n − 1, and |AH4
i | = 1. Let let

Gil = f−1(AH l
i), 1 ≤ l ≤ 4. By Theorem 2.3, Gil be the induced subgraph of

P (n, 2) is the maximum. Therefore by Lemma 1.2, ECf (Ai) is minimum and using
Theorem 2.2, ECf (Ai) = 3(n− 1)− 2((n− 1) + (bn−2

2
c)− 3) = 10. By Lemma 1.3,

the wirelength of Petersen graph P (n, 2) into cycle of triangle CTn is calculated by

WL(P (n, 2), CTn) = Σ
(n/2)−1
i=0 ECf (Ai) = 5n.
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Figure 1: Embedding of Petersen Graph P (10, 2) into CT20

By extending the above arguments, we can easily arrive the following result.
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Theorem 3.3. The exact wirelength of Petersen graph P (n,m), 1 ≤ m ≤ n −
1 and n 6= 2m into cycle of traingle CTn is given by WL(P (n,m), CTn) = (m+3)n.

4. Conclusion
In this paper, we have found the exact wirelength of generalized Petersen graph

P (n,m) into cycle of triangle CTn by effectively using generalized congestion and
partition lemmas.
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